新航道好轻松考研网 - 一家专业的研究生考试培训教育机构       全国服务热线 :4008-125-888
首页 考研数学资讯 什么是切比雪夫不等式?切比雪夫不等式的推导证明方法总结

什么是切比雪夫不等式?切比雪夫不等式的推导证明方法总结

2022-08-27 13:36 来源:互联网 作者:wtf
摘要:切比雪夫不等式一般指切比雪夫定理,19世纪俄国数学家切比雪夫研究统计规律中,论证并用标准差表达了一个不等式,这个不等式具有普遍的意义,被称作切比雪夫定理。

切比雪夫不等式的提出早在19世纪,俄国数学家切比雪夫在研究运算规律中,通过论证并用标准差表达了一个不等式,这个不等式具有普遍的意义,被称作切比雪夫定理。下文中主要介绍的什么是切比雪夫不等式,切比雪夫不等式的推导证明方法,一起来了解吧。

一、什么是切比雪夫不等式

切比雪夫不等式的定义是:设X是一个随机变数取区间(0,∞)上的值,F(x)是它的分布函数,设Xα(α >0)的数学期望M(Xα )存在,a>0,则不等式成立。这就是著名的切比雪夫定理,或者切比雪夫不等式。

切比雪夫定理的这一推论,使我们关于算术平均值的法则有了理论根据,设测量某一物理量a,在条件不变的情况下重复测量n次,得到的结果X1,X2,…,Xn是不完全相同的。

二、切比雪夫不等式的推导证明方法

1、切雪夫不等式证明方法

试利用切比雪夫不等式证明:能以大小0.97的概率断言,将一枚均匀硬币连续抛1000次,其出现正面的次数在400到600之间。

分析:将一枚均匀硬币连续抛1000次可看成是1000重贝努利试验,因此

1000次试验中出现正面H的次数服从二项分布.

解:设X表示1000次试验中出现正面H的次数,则X是一个随机变量,且

~XB(1000,1/2).因此

500

2

1

1000=×==npEX,

250)

2

答题完毕,祝你开心!

1

1(

2

1

1000)1(= ××= =pnpDX,

而所求的概率为

}500600500400{}600400{ << =< }100100{< < =EXXP

}100{< =EXXP

975.0

100

1

2

= ≥

DX

2、比雪夫不等式证明方法

切比雪夫(Chebyshev)不等式

对于任一随机变量X ,若EX与DX均存在,则对任意ε>0,

恒有P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2

切比雪夫不等式说明,DX越小,则 P{|X-EX|>=ε}

越小,P{|X-EX|<ε}越大, 也就是说,随机变量X取值基本上集中在EX附近,这进一步说明了方差的意义。

同时当EX和DX已知时,切比雪夫不等式给出了概率P{|X-EX|>=ε}的一个上界,该上界并不涉及随机变量X的具体概率分布,而只与其方差DX和ε有关,因此,切比雪夫不等式在理论和实际中都有相当广泛的应用。需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。

切比雪夫不等式是指在任何数据集中,与平均数超过K倍标准差的'数据占的比例至多是1/K^2。

在概率论中,切比雪夫不等式显示了随机变数的「几乎所有」值都会「接近」平均。这个不等式以数量化这方式来描述,究竟「几乎所有」是多少,「接近」又有多接近:

与平均相差2个标准差的值,数目不多于1/4

与平均相差3个标准差的值,数目不多于1/9

与平均相差4个标准差的值,数目不多于1/16

以上就是为大家介绍的有关什么是切比雪夫不等式以及切比雪夫不等式的推导证明方法,希望对大家有一定的帮助。如果大家对以上内容还存在疑问,可以在线咨询本站老师。

免费领取资料

独家考研团队题型预测,考研英语近20年真题解析+高分范文,政治复习资料全集、最新政治热点,数学常考公式以及专业课等资料

方法1:扫码添辅导老师微信

微信号:xhdkaoyan

方法2:填写个人信息老师亲自联系您

特色课程
相关文章推荐 更多>
    考研群 扫码领资料
    • 考研英语历年真题

      获取

      扫码添加老师微信

      请注明:姓名-公司-职位
      以便审核进群资格,未注明
      则拒绝

    • 考研数学历年真题

      获取

      扫码添加老师微信

      请注明:姓名-公司-职位
      以便审核进群资格,未注明
      则拒绝

    • 考研政治各科历年真题

      获取

      扫码添加老师微信

      请注明:姓名-公司-职位
      以便审核进群资格,未注明
      则拒绝

    • 专业课历年真题

      获取

      扫码添加老师微信

      请注明:姓名-公司-职位
      以便审核进群资格,未注明
      则拒绝

    • 课程录播(视频)

      获取

      扫码添加老师微信

      请注明:姓名-公司-职位
      以便审核进群资格,未注明
      则拒绝

    在线课堂

    排行榜 更多 >